If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-18x-32=0
a = 9; b = -18; c = -32;
Δ = b2-4ac
Δ = -182-4·9·(-32)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{41}}{2*9}=\frac{18-6\sqrt{41}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{41}}{2*9}=\frac{18+6\sqrt{41}}{18} $
| 3/4(x-2)=6 | | 25+4n=5(5+3n) | | c-19.2=34 | | 5x-3(-6x+5)=130 | | 16-13v=-29 | | -3(-9-b)=1/3(b+4) | | 1.6x-2.4=4 | | -3(4p-3)=6(2p-5) | | (7a-4)(4a-8)=0 | | 4(7-2x)=84 | | 2x-2(-3x+3=58 | | 9-t=t+4 | | 3z(2z+9)-15=0 | | 3-2x(5-2x)=4x2+X+-30 | | -3x+(-7x)=-40 | | 3x+5(56)=-22 | | 24y-8=13 | | -3(p-3)=6(2p-5) | | 3x=77+4x+54 | | x^2+3x=-2x-6 | | -8b-8=7-2 | | 70=-6t-2 | | 4x×2=20 | | 8+8+w+w=24 | | 8=h-5 | | 11=6x+4 | | 3x-5(-616)=-22 | | 6x^2-5=70 | | x3+3x2-9x-27=0 | | 8+8+4w+4w=24 | | 2(x-5)-17=45-6x | | -N3+12n2+48n+-64=0 |